
IN CLOUDONOMICS, I ADDRESSED TO-
TAL COST AND PERFORMANCE OPTIMIZA-
TION FOR A CUSTOMER IN RELATION TO A 
CLOUD PROVIDER.1 For example, all other things 
being equal, a hybrid cloud architecture can often 
lead to total cost savings in the presence of variable 
demand, even if the unit cost of the cloud services is 
priced at a premium. However, in addition to simple 
customer-cloud relationships, there are also cloud-
cloud relationships. In the same way that the Inter-
net is a set of interoperable, loosely coupled networks, 
the Intercloud is intended to be a set of interoperable, 
loosely coupled clouds. The Intercloud promises re-
duced complexity, optimized prices, reduced latency, 
enhanced reliability, and better capacity utilization. 
For example, a cloud provider can extend its geo-
graphic reach or become a virtual operator through 
footprint augmentation, that is, by leveraging physi-
cal resources such as compute, network, and storage 

in other geographic regions—from partners or com-
petitors. Or, in another scenario, a cloud provider can 
enhance its reliability by failing over to or replicating 
data to a facility operated by another cloud provider. 
All of these benefits can be quantified.

What Is the Intercloud?
As used here, the Intercloud is an emerging, gener-
ic concept, not an offer from any particular cloud 
provider or enabling technology vendor, and not to 
be confused with a hybrid cloud (a combination of 
an enterprise datacenter and public cloud provider 
resources) or a multicloud (the use by a customer 
of multiple cloud providers). Broadly speaking, 
it’s analogous to similar concepts from other in-
dustries.2 Airlines, for example, will use capacity 
from other airlines, for reasons such as limited ca-
pacity (for example, rebooking a passenger from 
an overbooked flight to a competitor’s), acting as a 
(mobile) virtual (airline network) operator (that is, 
“code-sharing”), or federating to extend a geographic 
footprint, as with the Star Alliance (United Air-
lines, Lufthansa, Air China, and so on). Similarly, 
in cellular telephony, some operators are mobile vir-
tual network operators and most have international 
roaming agreements. The differences between the 
Intercloud, multiclouds, and hybrid clouds become 
clearer by analogy: a hybrid transportation solution 
might entail a combination of your own car and a 
public airline service; a multicloud might be akin 
to a passenger buying one ticket on one airline and 
a separate ticket on a different one; and the Inter-
cloud is similar to purchasing a multi-leg trip from a 
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single airline, say, United, and letting it worry about 
code-sharing and ticketing on alternate airlines.

IEEE is developing a set of Intercloud stan-
dards, such as P2301 and P2302,3 for portability, 
interoperability, and federation among cloud provid-
ers. These promise benefits for both customers and 
cloud providers. For example, a customer is more 
likely to be able to acquire and pay for needed ca-
pacity, even if a preferred cloud service provider has 
a temporary “stock-out.” To enable this and related 
scenarios, emerging approaches4 will allow cloud 
providers to advertise and acquire resources via a 
shared communications substrate and ontology (like 
clouds, airlines must be able to talk to each other 
and have a common understanding of seat classes, 
airports, departure and arrival times, and so on), 
and workloads must be portable (passengers must be 
able to move from one plane or airline to another).5 
Moreover, a control-plane layer needs to be able to 
orchestrate dynamic allocation of atomic resources 
across the Intercloud in real time: one free airline 
seat shouldn’t be allocated to two different custom-
ers, and neither should a compute resource.

Interface Complexity Benefits
If there are n cloud providers, a single uniform stan-
dard for user-to-cloud interfaces such as the Open 
Cloud Computing Interface (http://occi-wg.org) re-
duces the complexity of access by a factor of n. This 
can be viewed similarly to a traveler requiring mul-
tiple electricity adapters (or perhaps, electric appli-
ances) if travelling to multiple regions of the world, 
but only needing a single one if there were a univer-
sal standard. As far as the Intercloud, a single stan-
dard for cloud-provider-to-cloud-provider interfacing 
would reduce the number of interfaces from n – 1 per 
cloud provider and thus perhaps n(n – 1) individual 
or n(n – 1)/2 partner interface development efforts in 
total to only n such efforts, as Figure 1 shows.

Market Benefits 
In today’s cloud market, there are a number of pro-
viders, and dynamic (that is, time-varying) pricing 
has emerged through mechanisms such as “spot in-
stances” (https://aws.amazon.com/ec2/spot). Using 
the Intercloud and its mechanisms for advertising re-
sources, service-level agreements (SLAs), and pric-
es, customers could exploit dynamic pricing and 

market dynamics to lower their expected average 
cost of resources by dynamically “shopping around” 
for the lowest cost provider, as with Expedia or Trav-
elocity, and migrating workloads via, say, live vir-
tual server migration or containers. I addressed the 
quantification of these exact benefits in a prior col-
umn.6 To recap briefly, the theory of order statistics 
teaches that if prices are random, independent, and 
identically distributed (IID) uniformly over the same 
range, say, [0, 1], the expected minimum price as the 
number of participants in a market grows to n cloud 
providers is 1/(n + 1), as Figure 2 shows (subject to 
caveats such as independence, distribution, and real 
price ranges). This implies that a market with even a 
few cloud providers can provide benefits.

 n(n–1) interfaces  n interfaces

Intercloud

FIGURE 1. Reduction in interface complexity among n cloud service 

providers.
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Footprint Augmentation
Any given cloud service provider has a given geo-
graphic footprint, such as, say, New York, Miami, 
and San Francisco. Because latency for interactive 
tasks can be reduced through geographic proxim-
ity, average and worst-case latency can be reduced 
by having resources closer to end users, such as 
through a content delivery network (cloud) or edge 
computing through a highly dispersed cloud.

One way to deploy such resources is to directly 
invest in facilities. Another is to augment one’s own 
footprint by federating with one or more other pro-
viders. In the worst case (for geographic dispersion), 
the one or more other providers have exactly the 
same footprint. Having another facility in each of 
New York, Miami, and San Francisco won’t reduce 
data transport latency due to propagation delay (al-
though it might due to latency issues induced by in-
sufficient bandwidth or server capacity). 

However, in the best case, one cloud provider’s 
geographic footprint will be optimally augmented by 
another’s highly complementary footprint. For ex-
ample, a single facility in New York serving a global 
audience won’t have latency reduced much by one in 
New Jersey, but it certainly will if complemented by 
a facility in Singapore.

On a plane, the average and worst-case laten-
cies are proportional to the inverse square root of 
the number of nodes, or facilities. This is because 
the area covered within a radius r is, of course, πr2, 
so s service nodes can cover an area of A  ∝ sπr2 (the 
exact equation depends on the degree of coverage 
overlap). Therefore, holding A constant, r, which is 
distance and is thus a reasonable proxy for latency, 
follows r ∝ 1/√−s. For a sphere, such as the planet 
Earth, this formula needs to be adjusted: for reason-
able numbers of nodes this approximately holds; but 
given only one node, an additional (antipolar) node 
will halve latency, so the ratio is r ∝ 1/s.7 As the 
number of nodes on a sphere increases, the inverse 
square root law holds more closely.

If each of n cloud providers has k nodes, then we 
have s = nk and the latency is proportional to 1/√−s = 
1/√−−

nk = 1/(√−n√
−
k) and since k is fixed, the latency is 

merely proportional to the inverse square root of the 
number of cloud providers, as Figure 3 shows.

Reliability
Experience has shown that a number of issues can 
befall cloud providers. These can occur at a single 
facility, as when four successive lightning strikes 
caused lost data at a Google datacenter in Belgium 
earlier this year,8 or spread across multiple facilities, 
as when software issues caused a wide-scale outage 
at Amazon Web Services on Christmas Eve, 2012 
(see https://aws.amazon.com/message/680587), and 
more recently in September 2015.9 In fact, every ma-
jor cloud provider has been down for either planned 
or unplanned reasons, or both.10

Let’s assume that the probability of any given 
physical datacenter site being available is p (and 
thus the chance of it being down is 1 – p). If site 
outages are independent, then if there are s sites, the 
probability that they are all down is (1 – p)s; therefore, 
the probability that at least one site is still function-
al is 1 – (1 – p)s. If each of n cloud providers has k 
sites, then s = nk and the probability that they’re all 
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down is (1 – p)s = (1 – p)nk = (1 – q)n, where q = 1 – 
(1 – p)k. Put differently, whether we’re talking about 
site outages or system-wide cloud provider outages, 
the same generic curve, shown in Figure 4, applies. 
In practice, additional considerations such as soft-
ware reliability, network reliability, and network 
capacity to support mirroring or replication will be 
important.

To be fair, a single (set of) common Intercloud 
protocol(s) in use across multiple providers could 
provide a means for enhancing reliability, but it 
could also be the foundation for anomalies and 
unintended consequences leading to Intercloud-
wide outages, or introduce a new vulnerability that 
wouldn’t exist across heterogeneous environments.

Demand at a Single Cloud Provider 
To understand the benefits of capacity sharing 
among cloud providers, we must first understand 
the demand at any given cloud provider. Whether 
an internal private cloud or a public cloud, one of 
the essential characteristics of a cloud is that it uti-
lizes a dynamically allocated shared resource pool 
to serve multiple workloads: different customers, 
business units, and/or application types, each with 
varying demand. A retailer, for example, might have 
peaks on Black Friday, Cyber Monday, and during 
its semi-annual private sale. A tax preparation firm 
may have peaks for early filers in mid-February and 
for late ones on 15 April. Another firm might do load 
testing every few weeks. Yet another might be a bro-
ker or bond trader specializing in the transportation 
sector. A news outlet might have peaks as important 
events occur such as elections, natural disasters, or 
celebrity situations.

The central limit theorem says that whenev-
er an increasing number of (what, for computing 
workloads, for all intents and purposes are) ran-
dom variables are added, the sum increasingly fol-
lows a normal distribution. So let’s assume that the 
aggregate demand at that cloud provider is D(t), a 
time-varying random variable with mean μ and vari-
ance σ2, and thus standard deviation σ. You’ll recall 
that a normal distribution follows the famous “bell-
shaped” curve in its probability density function, as 
Figure 5 shows, and the larger the standard devia-
tion, the “wider” that curve is.

What about capacity? A cloud provider can’t de-

ploy infinite capacity, so there’s always a chance that 
the provider, or a given location, will have insuf-
ficient capacity due to either a single customer sud-
denly requiring explosive capacity, or a confluence 
of expected and unexpected peaks. For example, 14 
February might represent a peak due to early tax fil-
ers, Valentine’s Day flower and candy purchases, and 
the unexpected death of a celebrity. It’s tempting to 
assume that computing is free and cloud providers 
will deploy “near-infinite” capacity, but it’s perhaps 
more likely that eventually cloud providers will look 
like airlines, oriented toward maximizing profitability 
through maximal resource utilization. 

Insufficient Capacity
For such a provider, how often will it suffer from in-
sufficient capacity? To put it another way, what’s the 
probability that a cloud provider with a given (fixed) 
capacity C will have sufficient capacity to meet all 
the customer demand given a (time-varying) de-
mand function D(t)? Let’s call this the sufficiency 
probability S(D(t), C), which is the probability p(D(t) 
< C).

When D(t) is normally distributed with mean μ 
and standard deviation σ, we can benefit by express-
ing C in terms of μ and σ as well, namely as C = μ  
+ kσ. Our job is now easy, because S is now just the 
Φ function, that is, the cumulative distribution 
function (CDF) Φ(x) for a normally distributed 

µ – 3σ µ – 2σ µ – σ µ µ + σ µ + 2σ µ + 3σ

Probability density
function ϕ(x)

99.7% within ± 3σ 

95% within ± 2σ 

68% within ± 1σ 

FIGURE 5. The normal distribution with mean μ and standard 

deviation σ.
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random variable with probability density ϕ(x), as 
Figure 6 shows. 

The function Φ(x) tells us the probability that 
the random variable is less than x (where x is the 
number of standard deviations). To normalize, we 
set x = k = (C – μ)/σ. In other words, we can deter-
mine the portion of the bell curve that lies to the left 
of C, representing demand less than capacity, and 
the portion of the bell curve that lies to the right of 
C, representing how frequently demand exceeds ca-
pacity, as Figure 6 shows (1 – Φ(x) is often referred 
to as the Q function, or (right) tail probability, Q(x)).

Unfortunately, such a function isn’t easy to 
evaluate, but fortunately, precalculated tables exist. 
Table 1 is a simplified one.

To make these abstractions more concrete, recall 
that about 68 percent of values for a normally dis-
tributed random variable will lie within one standard 

deviation of the mean, as shown in Figure 5. This 
means that about 32 percent lie outside the mean, 
leaving about 16 percent to be less than μ – (1)σ and 
16 percent to be more than μ + (1)σ. So, if we set 
capacity C = μ + (1)σ, we’ll have sufficient capacity 
about Φ(1) ≅ 0.84 = 0.68 + 0.16 of the time. Because 
about 95 percent of values lie within two standard de-
viations, if we set capacity to be μ + 2σ, by similar 
logic, we would have sufficient capacity just over 97.5 
percent of the time. If we set capacity at μ + 3σ, we’d 
have sufficient capacity about 99.9 percent of the 
time, and so on.

Why Not Just Set Capacity at μ + 3σ or 
Higher?
To maximize the likelihood of serving customers 
(and capturing revenue), why wouldn’t a cloud 
provider just set capacity 3 or 4 or more standard 
deviations above the mean, thus typically ensur-
ing sufficient capacity? The reason is that having 
enough capacity to meet extremely rare spikes 
means that all the rest of the time (that is, vir-
tually always) there’s way too much capacity. 
This excess capacity can represent a large capi-
tal investment or operating lease commitment for 
equipment as well as, typically, for additional cost 
structure elements such as heating, ventilation, 
and air conditioning, floor space, insurance, and 
power. “Typically,” because some technologies—
say, intermittently powering down unused serv-
ers—can reduce costs such as power and cooling as 
well as extend the average life of equipment. Run-
ning with a poorly managed cost structure would 
not be a good strategy in today’s highly competitive 
cloud marketplace, made increasingly competitive 
due to intermediaries.11

Consequently, a cloud provider faces a conun-
drum. High levels of capacity maximize revenue, but 
at a high cost; low levels reduce costs, but also reduce 
revenue. Therefore, the challenge is to find a bal-
ance between lost revenue and costs associated with 
fixed capacity, while recognizing that a resale model 
of other cloud providers’ capacity is likely to have a 
different cost structure than one based on one’s own 
capacity. In the same way that an individual custom-
er can complement limited capacity with the elastic 
capacity offered by a cloud provider, so can a cloud 
provider.
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The Case of the Intercloud
Let’s expand the simple demand and capacity model 
to two or more clouds.  At any given time, a cloud 
might have excess capacity (extra unsold airline 
seats or virtual machines) or exhibit insufficient ca-
pacity (that is, be overbooked). Most of this article 
focuses on how the Intercloud can address the latter 
case, but of course if cloud provider A sells capacity 
from cloud provider B, whether because it’s a virtual 
operator, or because of capacity outages or spikes in 
demand, it solves A’s under-capacity and B’s overca-
pacity issues simultaneously.

Assuming we have n clouds, let the demand 
at each cloud be represented by Di(t) for i = 1, 2, 
…, n. To keep things simple, let’s assume that each 
cloud has independent, identically distributed de-
mand, namely, normally distributed with mean μ 
and standard deviation σ. Keeping things simple, 
let’s assume that each cloud hires the same capacity 
planning consulting firm and determines that C = μ 
+ kσ is the optimal capacity; in other words, that Ci 
= μ + kσ for all i = 1, 2, …, n. 

Because the Intercloud enables capacity shar-
ing, where provider 1 can provide needed capacity 
to provider 2 or vice versa, the aggregate capacity 
is now C+ = nC = n(μ + kσ). The aggregate demand 
can be represented by 

D t D ti
i

n+
=

( ) = ( )∑ 1
.

For independent, normally distributed random vari-
ables, the sum is also normally distributed, the mean 
of the sum is the sum of the means, and the vari-
ance of the sum is the sum of the variances. Conse-
quently, the mean of D+(t)is nμ and, because the 
standard deviation is the square root of the variance, 
the standard deviation of D+(t) is nσ2 , which is 
just nσ .

Let us now ask how S(D(t), C), the capac-
ity sufficiency of a single cloud provider, compares 
with S(D+(t), C+), the sufficiency of the Intercloud. 
We already know that S(D(t), C) = Φ(k), where k = 
(C – μ)/σ. Similarly, we can say that S(D+(t), C+) = 
Φ(k+), but we need to figure out what k+ is. It fol-
lows that C n knC n+ += = +μ σ , and we recall 
that C = μ + kσ, so nC = nμ + nkσ. Therefore, 
nC n nk n k n= + = + +μ σ μ σ . Eliminating the 
nμ term  and dividing both sides by nσ  tells us 

that k nk+ = . Since all CDFs are nondecreasing, 
but the CDF for the normal distribution is mono-
tonically increasing, and since it’s always the case 
that n >1 whenever n > 1, Φ(k+) > Φ(k) and thus 
S(D+(t), C+) > S(D(t), C) whenever there’s an Inter-
cloud with two or more cloud providers, that is, n ≥ 
2. To put it more simply, the Intercloud will have suf-
ficient capacity more often than a single provider will.

Some examples show this effect, using the re-
duced set of tabulated values of Φ(x) shown in Ta-
ble 1. Suppose there are two providers (n = 2) and 
capacity is set at one standard deviation above the 
mean (k = 1). Then, k nk+ = = ×2 1, so the prob-
ability of sufficient capacity rises from about 84 
percent for a single provider to about 92 percent for 
two. If we increase the number of providers to four, 
probability rises to almost 98 percent. If we start 
with a capacity at two standard deviations above the 
mean, our probability of sufficiency is already close 
to 98 percent, but just one cloud partner takes us 
to about 99.8 percent k nk+ = = ×( )2 2 .  A few 
percentage points or tenths of a percent might not 
seem like a lot, but we are talking about multibil-
lion-dollar businesses that are headed to be multi-
ten-billion-dollar ones.

Caveats
The assumptions that permit a straightforward 
mathematical analysis might not hold exactly in 
the real world. For example, a normal distribution 

Table 1. Values for the cumulative distribution function Φ(x) for a 
standard normal distribution.

x Φ(x) x Φ(x) x Φ(x)

0.0 0.5000 1.0 0.8413 2.0 0.9772

0.1 0.5398 1.1 0.8643 2.1 0.9821

0.2 0.5793 1.2 0.8849 2.2 0.9861

0.3 0.6179 1.3 0.9032 2.3 0.9893

0.4 0.6554 1.4 0.9192 2.4 0.9918

0.5 0.6915 1.5 0.9332 2.5 0.9938

0.6 0.7257 1.6 0.9452 2.6 0.9953

0.7 0.7580 1.7 0.9554 2.7 0.9965

0.8 0.7881 1.8 0.9641 2.8 0.9974

0.9 0.8159 1.9 0.9713 2.9 0.9981
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can take on unboundedly large negative values, but 
demand can’t be negative. Also, workloads might not 
be divisible into parts that can be distributed at all, 
much less across multiple geographically distributed 
entities, due to either the performance of the 
technical architecture or the reality of Intercloud 
data transport surcharges. It’s an NP-complete 
problem, that is, computationally intractable, to 
divide up a number of workloads across multiple 
buckets (cloud providers or cloud locations) when 
the workloads are indivisible and vary in size.12

Also, cloud providers aren’t at the mercy of in-
dividual or aggregate demand. They can attempt to 
shape demand by utilizing dynamic pricing, spot in-
stances, or promotions to incent demand during low-
demand periods, or utilizing surge pricing to disincent 
it. Or, like Google, they can accomplish both at the 
same time by effectively offering a discount for flat-
ter demand patterns.13 However, although this might 
flatten demand, there’s still an argument to be made 
that demand is normally distributed, just with reduced 
variance, and thus there’s still a role for the Intercloud.

Further Research
Ultimately, a provider doesn’t just want to reduce 
the likelihood of being unable to serve customers, 
but to maximize profitability. A full model would 
consider the margin from utilizing others’ capacity 
by selling at one price but acquiring the resources 
at one or more wholesale prices; the margin from 
selling one’s own capacity to resellers; a variety of 
capacity levels, distributions, costs, and perhaps 
quality from different sized providers, and the 
cost of moving workloads and moving, replicating, 
or remotely accessing data associated with those 
workloads. Moreover, we don’t just want to know 
the probability of insufficient capacity, but the 
lost revenue and/or profit, and how much is recap-
tured through the Intercloud. This requires utiliz-
ing the expected value of the tail distribution, i.e., 
Q-function, less the baseline capacity E(Q(x)) – C 
= E(1 – Φ(x)) – C, which is similar to the “hazard 
rate,” times the total actual capacity and the profit 
contribution from that capacity. There might also 
be game theoretic and option value considerations: 
does serving a given customer preclude serving a 
different customer who might have a greater will-
ingness to pay a higher future price? 

THE INTERCLOUD—AS WITH RELATED CON-
CEPTS FROM DOMAINS BEYOND COMPUT-
ING—PROMISES A VARIETY OF BUSINESS 
BENEFITS, SUCH AS REDUCED LATENCY, 
ENHANCED RELIABILITY, AND GREATER 
ABILITY TO SERVICE CUSTOMER DEMAND. 
Even a simple analysis can quantify what these are 
under conditions of uncertainty.
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